X)=x\,\,ln\,\,x\] \[f'(x)=\FRAC{x}{x}+\] ln \[x=1+ln\,\,x\] Put \[f(x)=0\Rightarrow 1+ln\,\,x=0\] \[\Rightarrow \] ln \[x=-1\Rightarrow x={{e}^{-1}}\] Now, \[f''(x)=\frac{1}{x}\] \[f''(x)\left| _{x=e}-1=\frac{1}{{{e}^{-1}}}=e>0 \right.\] Hence, \[f(x)\] ATTAINS MINIMUM value at\[x={{e}^{-1}}\].