E}^{x}}};f'(x)=\frac{2X.{{e}^{x}}-{{e}^{x}}.{{x}^{2}}}{{{\LEFT( {{e}^{x}} \right)}^{2}}}\] \[f'(x)=\frac{2x-{{x}^{2}}}{{{e}^{x}}}\] As \[{{e}^{x}}\] is always positive and for monotonically increasing; \[2x-{{x}^{2}}>0\] \[\Rightarrow {{x}^{2}}-2x<0\Rightarrow x(x-2)<0\Rightarrow x\in (0,2)\]