LET \[y={{x}^{2}}-4x+3\] DIFFERENTIATE both sides w.r.t. ?x? \[\FRAC{dy}{dx}=2x-3\] So, SLOPE \[=2x-3\] Since, tangent is \[\parallel \] to x = axis \[\therefore \] slope = 0 \[\Rightarrow \frac{dy}{dx}=0\Rightarrow 2x-3=0\Rightarrow x=\frac{3}{2}\] \[\Rightarrow \] one tangent