0\] Using A.M\[\ge G.M.\]we get \[\frac{{{\cot }^{-1}}x+(\pi -co{{t}^{-1}}x)}{2}\ge \sqrt{(co{{t}^{-1}}x)(\pi -co{{t}^{-1}}x)}\] \[\Rightarrow 0<{{\cot }^{-1}}(x)(\pi -co{{t}^{-1}}(x))\] \[\LE \LEFT( \frac{{{\cot }^{-1}}x+(\pi -co{{t}^{-1}}x)}{2} \right)=\frac{{{\pi }^{2}}}{4}\] \[\Rightarrow 0