9-{{x}^{2}}}\] \[f'(x)=\frac{1}{2\sqrt{9-{{x}^{2}}}}\times (-2x)=-\frac{x}{\sqrt{9-{{x}^{2}}}}\] For function to be increasing \[-\frac{x}{\sqrt{9-{{x}^{2}}}}>0\] or \[-x>0\] or \[x<0\] but \[\sqrt{9-{{x}^{2}}}\] is DEFINED only when \[9-{{x}^{2}}>0\] or \[{{x}^{2}}-9<0\] \[(x+3)(x-3)<0\] i.e., \[-3