14\;}}{{2 \times 0.05}} = 280MPa\)Longitudinal stress σL \({σ _2} ={σ _L} = \frac{{pd}}{{4t}} = \frac{{2 \times 14\;}}{{4 \times 0.05}} = 140MPa\)As this is the case of a thin cylinder:Radial stress \({σ _r} =0\)Maximum shear stress \({τ _{max}} = \max \left\{ {\frac{{{\SIGMA _1} - {\sigma _2}}}{2},\frac{{{\sigma _1}}}{2},\frac{{{\sigma _2}}}{2}} \right\}\)τmax = \(\frac{{σ _h}-{σ _r}}{{2}}=\frac{{σ _1} }{2} = \frac{280}{2}=140~ MPa\) Maximum In-Plane shear stress/Surface shear stress:\(τ_{max,inplane}=\frac{{σ _1}-{σ _2}}{{2}}\)Maximum wall shear stress/Out plane shear stress/Absolute shear stress:\(τ_{max,abs}=\frac{{σ _{max}}-{σ _{min}}}{{2}}=\frac{σ_1}{2}\)

"> 14\;}}{{2 \times 0.05}} = 280MPa\)Longitudinal stress σL \({σ _2} ={σ _L} = \frac{{pd}}{{4t}} = \frac{{2 \times 14\;}}{{4 \times 0.05}} = 140MPa\)As this is the case of a thin cylinder:Radial stress \({σ _r} =0\)Maximum shear stress \({τ _{max}} = \max \left\{ {\frac{{{\SIGMA _1} - {\sigma _2}}}{2},\frac{{{\sigma _1}}}{2},\frac{{{\sigma _2}}}{2}} \right\}\)τmax = \(\frac{{σ _h}-{σ _r}}{{2}}=\frac{{σ _1} }{2} = \frac{280}{2}=140~ MPa\) Maximum In-Plane shear stress/Surface shear stress:\(τ_{max,inplane}=\frac{{σ _1}-{σ _2}}{{2}}\)Maximum wall shear stress/Out plane shear stress/Absolute shear stress:\(τ_{max,abs}=\frac{{σ _{max}}-{σ _{min}}}{{2}}=\frac{σ_1}{2}\)

">

A gas is stored in a cylindrical tank of inner radius 7 m and wall thickness 50 mm. The gauge pressure of the gas is 2 MPa. The maximum shear stress (in MPa) in the wall is

Machine Design Cylinder Pressure Vessels in Machine Design 8 months ago

  4   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Explanation:Circumferential stress of hoop stress σh \({σ _1} ={σ _h} = \frac{{pd}}{{2t}} = \frac{{2 \times 14\;}}{{2 \times 0.05}} = 280MPa\)Longitudinal stress σL \({σ _2} ={σ _L} = \frac{{pd}}{{4t}} = \frac{{2 \times 14\;}}{{4 \times 0.05}} = 140MPa\)As this is the case of a thin cylinder:Radial stress \({σ _r} =0\)Maximum shear stress \({τ _{max}} = \max \left\{ {\frac{{{\SIGMA _1} - {\sigma _2}}}{2},\frac{{{\sigma _1}}}{2},\frac{{{\sigma _2}}}{2}} \right\}\)τmax = \(\frac{{σ _h}-{σ _r}}{{2}}=\frac{{σ _1} }{2} = \frac{280}{2}=140~ MPa\) Maximum In-Plane shear stress/Surface shear stress:\(τ_{max,inplane}=\frac{{σ _1}-{σ _2}}{{2}}\)Maximum wall shear stress/Out plane shear stress/Absolute shear stress:\(τ_{max,abs}=\frac{{σ _{max}}-{σ _{min}}}{{2}}=\frac{σ_1}{2}\)

Posted on 24 Nov 2024, this text provides information on Machine Design related to Cylinder Pressure Vessels in Machine Design. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.