PD}}{{4tE}}\left( {1 - \mu } \right)\)CalculationGivend = 400 mm, t = 20 mm, E = 200 GPa, μ = 0.3Maximum strain, εmax = 100 × 10-7When strain in the SPHERE exceeds the maximum allowable strain, There will be a FAILURE.\( {\varepsilon } = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)\(100 \times {10^{ - 7}} = \frac{{P \times 400}}{{4 \times 20 \times 200 \times {{10}^3}}}\left( {1 - 0.3} \right)\)P = 0.57 MPaDescriptionCylindrical vesselSpherical VesselLongitudinal stress\({\sigma _l} = \frac{{pd}}{{4T}}\)\({\sigma _l} = \frac{{pd}}{{4t}}\)Hoop stress\({\sigma _h} = \frac{{pd}}{{2t}}\)\({\sigma _h} = \frac{{pd}}{{4t}}\)Longitudinal strain\({\varepsilon _l} = \frac{{pd}}{{4tE}}\left( {1 - 2\mu } \right)\)\({\varepsilon _l} = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)Hoop strain\({\varepsilon _h} = \frac{{pd}}{{4tE}}\left( {2 - \mu } \right)\)\({\varepsilon _h} = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)Volumetric strain\({\varepsilon _v} = \frac{{pd}}{{4tE}}\left( {5 - 4\mu } \right)\)\({\varepsilon _v} = \frac{{3pd}}{{4tE}}\left( {1 - \mu } \right)\)

"> PD}}{{4tE}}\left( {1 - \mu } \right)\)CalculationGivend = 400 mm, t = 20 mm, E = 200 GPa, μ = 0.3Maximum strain, εmax = 100 × 10-7When strain in the SPHERE exceeds the maximum allowable strain, There will be a FAILURE.\( {\varepsilon } = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)\(100 \times {10^{ - 7}} = \frac{{P \times 400}}{{4 \times 20 \times 200 \times {{10}^3}}}\left( {1 - 0.3} \right)\)P = 0.57 MPaDescriptionCylindrical vesselSpherical VesselLongitudinal stress\({\sigma _l} = \frac{{pd}}{{4T}}\)\({\sigma _l} = \frac{{pd}}{{4t}}\)Hoop stress\({\sigma _h} = \frac{{pd}}{{2t}}\)\({\sigma _h} = \frac{{pd}}{{4t}}\)Longitudinal strain\({\varepsilon _l} = \frac{{pd}}{{4tE}}\left( {1 - 2\mu } \right)\)\({\varepsilon _l} = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)Hoop strain\({\varepsilon _h} = \frac{{pd}}{{4tE}}\left( {2 - \mu } \right)\)\({\varepsilon _h} = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)Volumetric strain\({\varepsilon _v} = \frac{{pd}}{{4tE}}\left( {5 - 4\mu } \right)\)\({\varepsilon _v} = \frac{{3pd}}{{4tE}}\left( {1 - \mu } \right)\)

">

A spherical steel pressure vessel 400 mm in diameter with a wall thickness of 20 mm, is coated with a brittle layer that cracks when strain exceeds100 x 10-7. What internal pressure will cause the layer to develop cracks? (E = 200 GPa, µ = 0.3)

Machine Design Cylinder Pressure Vessels in Machine Design 9 months ago

  951   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:The longitudinal and hoop stress in the thin spherical vessel is given by,\({\varepsilon _H} = {\varepsilon _L}=\varepsilon = \frac{{PD}}{{4tE}}\left( {1 - \mu } \right)\)CalculationGivend = 400 mm, t = 20 mm, E = 200 GPa, μ = 0.3Maximum strain, εmax = 100 × 10-7When strain in the SPHERE exceeds the maximum allowable strain, There will be a FAILURE.\( {\varepsilon } = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)\(100 \times {10^{ - 7}} = \frac{{P \times 400}}{{4 \times 20 \times 200 \times {{10}^3}}}\left( {1 - 0.3} \right)\)P = 0.57 MPaDescriptionCylindrical vesselSpherical VesselLongitudinal stress\({\sigma _l} = \frac{{pd}}{{4T}}\)\({\sigma _l} = \frac{{pd}}{{4t}}\)Hoop stress\({\sigma _h} = \frac{{pd}}{{2t}}\)\({\sigma _h} = \frac{{pd}}{{4t}}\)Longitudinal strain\({\varepsilon _l} = \frac{{pd}}{{4tE}}\left( {1 - 2\mu } \right)\)\({\varepsilon _l} = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)Hoop strain\({\varepsilon _h} = \frac{{pd}}{{4tE}}\left( {2 - \mu } \right)\)\({\varepsilon _h} = \frac{{pd}}{{4tE}}\left( {1 - \mu } \right)\)Volumetric strain\({\varepsilon _v} = \frac{{pd}}{{4tE}}\left( {5 - 4\mu } \right)\)\({\varepsilon _v} = \frac{{3pd}}{{4tE}}\left( {1 - \mu } \right)\)

Posted on 16 Nov 2024, this text provides information on Machine Design related to Cylinder Pressure Vessels in Machine Design. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.