COT A=\frac{\COS A}{\sin A}=\frac{2{{\cos }^{2}}A}{2\sin A\cos A}=\frac{1+\cos 2A}{\sin 2A}\] PUTTING \[A=7\frac{{{1}^{o}}}{2}\RIGHTARROW \cot 7\frac{{{1}^{o}}}{2}=\frac{1+\cos {{15}^{o}}}{\sin {{15}^{o}}}\] On simplification, we get \[\cot 7\frac{{{1}^{o}}}{2}=\sqrt{6}+\sqrt{2}+\sqrt{3}+\sqrt{4}\].