COT A=\frac{\COS A}{\sin A}=\frac{2{{\cos }^{2}}A}{2\sin A\cos A}=\frac{1+\cos 2A}{\sin 2A}\] PUTTING \[A=7\frac{{{1}^{o}}}{2}\RIGHTARROW \cot 7\frac{{{1}^{o}}}{2}=\frac{1+\cos {{15}^{o}}}{\sin {{15}^{o}}}\] On simplification, we get \[\cot 7\frac{{{1}^{o}}}{2}=\sqrt{6}+\sqrt{2}+\sqrt{3}+\sqrt{4}\].

"> COT A=\frac{\COS A}{\sin A}=\frac{2{{\cos }^{2}}A}{2\sin A\cos A}=\frac{1+\cos 2A}{\sin 2A}\] PUTTING \[A=7\frac{{{1}^{o}}}{2}\RIGHTARROW \cot 7\frac{{{1}^{o}}}{2}=\frac{1+\cos {{15}^{o}}}{\sin {{15}^{o}}}\] On simplification, we get \[\cot 7\frac{{{1}^{o}}}{2}=\sqrt{6}+\sqrt{2}+\sqrt{3}+\sqrt{4}\].

">

\[\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}\] is equal to [IIT 1966, 1975]

Mathematics Trigonometric Identities in Mathematics . 5 months ago

  6   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

We have \[\COT A=\frac{\COS A}{\sin A}=\frac{2{{\cos }^{2}}A}{2\sin A\cos A}=\frac{1+\cos 2A}{\sin 2A}\] PUTTING \[A=7\frac{{{1}^{o}}}{2}\RIGHTARROW \cot 7\frac{{{1}^{o}}}{2}=\frac{1+\cos {{15}^{o}}}{\sin {{15}^{o}}}\] On simplification, we get \[\cot 7\frac{{{1}^{o}}}{2}=\sqrt{6}+\sqrt{2}+\sqrt{3}+\sqrt{4}\].

Posted on 16 Aug 2024, this text provides information on Mathematics related to Trigonometric Identities in Mathematics. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.