Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Take A QuizChallenge yourself and boost your learning! Start the quiz now to earn credits.
Take A QuizUnlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Take A QuizMobile Technologies Mobile Computing 5 months ago
Posted on 13 Aug 2024, this text provides information on Mobile Computing related to Mobile Technologies. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Mobile Technologies 1 Answers
Mobile Technologies 0 Answers
Mobile Technologies 0 Answers
Mobile Technologies 0 Answers
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.
manpreet
Best Answer
2 years ago
_x000D_ Here is an example code. Put this into your activity class: /* put this into your activity class */ private SensorManager mSensorManager; private float mAccel; // acceleration apart from gravity private float mAccelCurrent; // current acceleration including gravity private float mAccelLast; // last acceleration including gravity private final SensorEventListener mSensorListener = new SensorEventListener() { public void onSensorChanged(SensorEvent se) { float x = se.values[0]; float y = se.values[1]; float z = se.values[2]; mAccelLast = mAccelCurrent; mAccelCurrent = (float) Math.sqrt((double) (x*x + y*y + z*z)); float delta = mAccelCurrent - mAccelLast; mAccel = mAccel * 0.9f + delta; // perform low-cut filter } public void onAccuracyChanged(Sensor sensor, int accuracy) { } }; @Override protected void onResume() { super.onResume(); mSensorManager.registerListener(mSensorListener, mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_NORMAL); } @Override protected void onPause() { mSensorManager.unregisterListener(mSensorListener); super.onPause(); } And add this to your onCreate method: /* do this in onCreate */ mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE); mSensorManager.registerListener(mSensorListener, mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_NORMAL); mAccel = 0.00f; mAccelCurrent = SensorManager.GRAVITY_EARTH; mAccelLast = SensorManager.GRAVITY_EARTH; You can then ask "mAccel" wherever you want in your application for the current acceleration, independent from the axis and cleaned from static acceleration such as gravity. It will be approx. 0 if there is no movement, and, lets say >2 if the device is shaked. Based on the comments - to test this: if (mAccel > 12) { Toast toast = Toast.makeText(getApplicationContext(), "Device has shaken.", Toast.LENGTH_LONG); toast.show(); } Notes: The accelometer should be deactivated onPause and activated onResume to save resources (CPU, Battery). The code assumes we are on planet Earth ;-) and initializes the acceleration to earth gravity. Otherwise you would get a strong "shake" when the application starts and "hits" the ground from free-fall. However, the code gets used to the gravitation due to the low-cut filter and would work also on other planets or in free space, once it is initialized. (you never know how long your application will be in use...;-)