MOMENT at the centre of the Circular slab is\({M_R} = \frac{W}{{16}} \times \left( {\left( {3 + \MU } \right)\left( {{R^2} - {r^2}} \right)} \right)\)Where MR = Radial momentR = radius of slabμ = Poisson’s ratior = any section at a distance r from centre of the slabW = load on circular slabFor MAXIMUM radial moment at centrer = 0 and μ = 0therefore, \({M_R}\; = \frac{W}{{16}} \times 3 \times {R^2} = \frac{{3W{R^2}}}{{16}}\)