PB = AQ/QC = AH = AB adding 1 on SIDES we get(AP/PB) + 1 = (AQ/QC) + 1(AP + PB)/PB = (AQ + QC)/QC.AB/PB = AC/QC = AH/AOPB/AB = QC/ACBP : AB = QC : AC = AO/AHGiven, ratio of areas of triangle APQ : triangle ABC is 25 : 36\(\begin{array}{L}\Rightarrow \frac{{\frac{1}{2} \times \;AH \times BC}}{{\frac{1}{2}\; \times AO\; \times PQ}} = \frac{{25}}{{36}}\\\Rightarrow \frac{{\;AH \times BC}}{{AO\; \times PQ}} = \frac{{25}}{{36}}\end{array}\)