GIVEN \[f(x)=k{{x}^{3}}-9{{x}^{2}}+9x+3\] On differentiating w.r.t.x, we get \[f'(x)=3k{{x}^{2}}-18x+9\] For a function to be monotonically increasing. \[{{b}^{2}}-4ac<0\] Here, \[a=3k,b=-18,c=9\] \[\therefore {{b}^{2}}-4ac={{(-18)}^{2}}-4(3k)(9)\] \[=(-18)(-18)-(3k)18\times 2\] \[\Rightarrow 36-12k<0\Rightarrow k>3\]